
An Evaluation of Code Generation of Dataflow
Languages on Manycore Architectures

Süleyman Savas, Essayas Gebrewahid, Zain Ul-Abdin, Tomas Nordström and Mingkun Yang

Centre for Research on Embedded Systems Halmstad University, Halmstad, Sweden

{suleyman.savas, essayas.gebrewahid, zain-ul-abdin, tomas.nordstrom}@hh.se, minyan09@student.hh.se

Abstract—Today computer architectures are shifting from
single core to manycores due to several reasons such as perfor-
mance demands, power and heat limitations. However, shifting
to manycores results in additional complexities, especially with
regard to efficient development of applications. Hence there is
a need to raise the abstraction level of development techniques
for the manycores while exposing the inherent parallelism in the
applications. One promising class of programming languages is
dataflow languages and in this paper we evaluate and optimize
the code generation for one such language, CAL. We have
also developed a communication library to support the inter-
core communication. The code generation can target multiple
architectures, but the results presented in this paper is focused
on Adapteva’s many core architecture Epiphany. We use the two-
dimensional inverse discrete cosine transform (2D-IDCT) as our
benchmark and compare our code generation from CAL with a
hand-written implementation developed in C. Several optimiza-
tions in the code generation as well as in the communication
library are described, and we have observed that the most critical
optimization is reducing the number of external memory accesses.
Combining all optimizations we have been able to reduce the
difference in execution time between auto-generated and hand-
written implementations from a factor of 4.3x down to a factor
of only 1.3x.

Index Terms—Manycore, Dataflow Languages, code genera-
tion, Actor Machine, 2D-IDCT, Epiphany, evaluation

I. INTRODUCTION

In the last decade we have seen a transition from single
core processors to multicore and manycore architectures, we
furthermore see a transition to a distributed memory model
where each core contains part of the common memory. These
transitions have emphasized the need for programming lan-
guages that better express inherent parallelism available in the
targeted applications. As a result, new languages based on
parallel and concurrent programming paradigms have emerged
[1], and the dataflow programming model [2], [3], [4] seems
to be a particularly good candidate for the big class of
streaming applications where data is processed as a continuous
stream. There is however a lack of compilation frameworks,
supporting dataflow languages, that generate code for the latest
generation of manycore architectures.

In this paper we will evaluate and optimize a compila-
tion framework targeting Adapteva’s manycore architecture
Epiphany [5]. This architecture is an example of the next
generation of manycore architectures that have been developed

in order to address the power and thermal dissipation limita-
tions of traditional single core processors. In the Epiphany
architecture the memory is distributed among all cores and
a shared address space allows all cores to directly access
data located in other cores. However, in contrast to traditional
multicores there is no cache memory and no direct hardware
support for memory coherence.

The dataflow language used in this work is the CAL actor
language (CAL) [4], [6], which is a modern dataflow language
that is adopted by the MPEG Reconfigurable Video Coding
(RVC) [7] working group as part of their standardization
efforts. In [8] the CAL compilation framework evaluated and
optimized in this paper is described. Our code generator uses a
simple machine model, called actor machine [9], to model ac-
tors in a dataflow application. We have also introduced an ac-
tion execution intermediate representation [8] to support pro-
gram portability and we currently support generating sequen-
tial C, parallel (manycore) C, and aJava/aStruct languages.
These intermediate representations are further introduced in
section IV. For the parallel C backend the code generator
utilizes an in-house developed communication library [10] to
support the communication between actors.

In order to evaluate various optimization methods for our
CAL code generator we will use a CAL implementation of
the Two-Dimensional Inverse Discrete Cosine Transform (2D-
IDCT) as a case study. We will compare the performance
of our automatically generated code (from CAL) with a
hand-written implementation programmed in C. From this
comparison a number of optimization opportunities has been
found and we will be able to evaluate the benefit of the various
optimizations implemented.

II. RELATED WORKS

CAL compilers have already been targeting a variety of plat-
forms, including single-core processors, multicore processors,
and programmable hardware. The Cal2C compiler [11] targets
the single-core processors by generating sequential C-code.
The Open-RVC CAL Compiler (ORCC) [12] generates multi-
threaded C-code that can execute on a multicore processor
using dedicated run-time system libraries. Similarly the d2c
[13] compiler produces C-code that makes use of POSIX
threads to execute on multicore processors.



In this paper, we present and evaluate a code generator for
manycore architectures that use actor machine [9] and action
execution intermediate representations (IRs) together with a
backend for the target architecture and a custom communi-
cation library. Executing a CAL actor includes choosing an
action that satisfy the required conditions and firing the action.
In other CAL code generators [11] [12], all required conditions
of the actions are tested at once, thus common conditions
among actions will be tested more than once. However in
our work, the schedule generated by the Actor machine stores
the values of the conditions and avoids a second test on the
conditions that are common.

In order to increase the portability of our compilation tool
we have used an imperative IR called action execution interme-
diate representation(AEIR) which distinguishes computation
and communication parts of the CAL applications. Hence it
becomes easier to port the application to another architecture
just by replacing the communication part with architecture spe-
cific communication operations. In addition, our compilation
tool generates separate code for each actor instance so that it
could be executed on individual processing cores. Therefore
we do not require any run-time system support for concurrent
execution of actors, in contrast to ORCC and d2c.

III. BACKGROUND

A. Epiphany Architecture

Adapteva’s manycore architecture Epiphany [5] is a two-
dimensional array of processing cores connected by a mesh
network-on-chip. Each core has a floating-point RISC CPU,
a direct memory access (DMA) engine, memory banks and
a network interface for communication between processing
cores. An overview of the Epiphany architecture can be seen
in Figure 1.

Fig. 1. Epiphany architecture overview.

In the Epiphany architecture each core is a superscalar,
floating-point, RISC CPU that can execute two floating point
operations and a 64-bit memory load operation on every
clock cycle. The cores are organized in a 2D mesh topology
with only nearest-neighbor connections. Each core contains a
network interface, a multi-channel DMA engine, a multicore
address decoder, and a network-monitor. The on-chip node-to-
node communication latencies are 1.5 clock cycles per routing
hop, with zero startup overhead. The network consists of three

parallel networks which are used individually for writing on-
chip, writing off-chip, and all read requests, respectively. Due
to the differences between the networks, writes are approx-
imately 16 times faster than reads for on-chip transactions.
The transactions are done by using dimension-order routing
(X-Y routing), which means that the data first travels along
the row and then along the column. The DMA engine is able to
generate a double-word transaction on every clock cycle and
has its own dedicated 64-bit port to the local memory. The
Epiphany architecture uses a distributed memory model with
a single, flat address space. Each core has its own aliased, local
memory range which has a size of 32kB. The local memory of
each core is accessible globally from any other core by using
the globally addressable IDs. However, even though all the
internal memory of each core is mapped to the global address
space, the cost (latency) of accessing them is not uniform as
it depends on the number of hops and contention in the mesh
network.

B. Dataflow Programming

Dataflow programming is a programming paradigm that
models a program as a directed graph of the data flowing
between operations or actors that operate on the dataflow.
Dataflow programming emphasizes the movement of data and
models programs as a series of connected actors. Each actor
only communicates through explicitly defined input and output
connectors and functions like a black box. As soon as all of
its inputs become valid, an actor runs asynchronous from all
other actors. Thus, dataflow languages are inherently parallel
and can work well in large, decentralized systems. Dataflow
programming is especially suited for streaming applications,
where data is processed as a continuous stream, as, e.g., video,
radar, or base station signal processing.

A number of dataflow languages and techniques were
studied [2], [3], and one of the interesting modern dataflow
languages is CAL Actor Language which has recently been
used in the standardization of MPEG Reconfigurable Video
Coding (RVC).

C. CAL Actor Language

A CAL dataflow program consists of stateful operators,
called actors, that transform input streams of data objects
(tokens) into output streams. The actors are connected by FIFO
channels and they consist of code blocks called actions. These
actions transform the input data into output data, usually with
the state of the actor changed.

An application consists of a network of actors. When
executed, an actor consumes the tokens on the input ports and
produces new tokens on the output ports. Following example
shows an actor which has one input port, two output ports and
two actions.

actor Split() int I1 ==> P, N:
action I1:[a] ==> P:[a]
guard a >= 0 end

action I1:[a] ==> N:[a]
guard a < 0 end



end

The first line declares the actor name, followed by a list of
parameters (which is empty, in this case) and the declaration
of the input (I1) and output ports (P and N). The second
line defines an action [14] and the third line defines a guard
statement. In many cases there are additional conditions which
need to be satisfied for an action to fire. These conditions can
be specified using the guard statements, as seen in the Split
actor. The schedule keyword in CAL permits to determine the
transitions between the different states. Each state transition
consists of three parts: the original state, a list of action tags,
and the following state. For instance,

init (readT) --> waitA;

init is the original state, readT is an action tag and waitA
is the following state. In this example, if readT action is
executed within the init state, the actor will go to the next
state which is waitA.

CAL has a network language (NL) in order to configure
the structure of the application. The structure is built by
instantiating the actors, defining channels and connecting the
actors via these channels. Following example demonstrates
a network with one input port and one output port. In the
network, one processor is instantiated and it is connected to
the input and output ports of the network.

network idct X0 ==> Y0
entities

scale = Scale()
structure

X0 --> scale.X0
scale.Y0 --> Y0

end

IV. CODE GENERATION

The code generator starts from high-level CAL implemen-
tation and generates a native implementation. Figure 2 shows
the CAL compilation framework. In CAL, actors execute by
firing of actions that satisfy all the required conditions like
availability of tokens, value of the tokens and internal state
of the actor. In code generation, the code generator has to
consider the ordering of these conditions and the number of
the tests performed before an action is fired. To schedule the
testing of firing conditions of an action we have used a simple
actor model called actor machine (AM) [9]. In addition, we
also have used an Action Execution Intermediate Representa-
tion (AEIR) that bring us closer to imperative languages [8].
As shown in Figure 2, in our compilation process each CAL
actor is translated to an AM that is then translated to AEIR.
Finally, the AEIR is used by three backends that generate
target specific code. Currently we have three backends: a
uniprocessor backend that generates sequential C code for a
single general purpose processor, an Epiphany backend that
generates parallel C code for Epiphany, and Ambric Backend
that generates aJava and aStruct for Ambric massively-parallel
processor array [15].

A. Intermediate Representation

1) Actor Machine: AM is a controller that provide an
explicit order to test all the firing conditions of all actions
in an actor. AM is made up of a set of states that memorize
the values of all conditions in an actor. Each state has a set of
AM instructions that leads to a destination states once applied
on the state. These AM instructions can be

• a test to perform a test on a guard or input port for
availability of token,

• an exec for an execution of an action that satisfy all the
firing conditions, or

• a wait to change information about absence of tokens to
unknown, so that a test on an input port can be performed
after a while.

Cedersjö and Janneck [16] have presented and examined
several ways of transforming an actor to an actor machine
. The code generator used in this paper translates CAL actors
to actor machines which memorize all the conditions and have
at most one AM instrucion per state.

2) Action Execution Intermediate Representation: AEIR
is a data structure that is applicable to generate code for
imperative languages like C, C++ and java. It has constructs
for expressions, statements, function declarations and function
calls. Translation of AM to AEIR deals with two main tasks.
The first task is the translation of CAL constructs to imperative
constructs. This includes CAL actions, variable declarations,
functions, statements and expressions. The second task is the
implementation of the AM that is the translation of the AM to
a sequential action scheduler. The states and the instructions
of the AM are translated to programing language constructs:
the states are translated to unique labels or if-statement on
state variable, test nodes to if-statements, exec to function call
and wait to a call for a target specific operation that pause
the execution of a process. The action scheduler is kept as a
separate imperative function in the AEIR. In a prior work [8],
we have presented the use of AEIR to generate sequential and
parallel C code. Section V-B presents three different parallel
C codes generated for Epiphany architecture.

B. Mapping CAL actors

There is no well-defined semantics for NL to guide an
implementation. In our work we have used Kahn Process
Networks (KPN) [17] for Ambric and extended Dataflow
Process Networks (DPN) [18] to generate sequential C code
for a general purpose CPU and parallel C code for Epiphany.

Ambrics proprietary tool comes with communication API
and mapping and scheduling protocols that support KPN.
Thus, for Ambric we have adapted the code generation in
accordance with the existing support for KPN. Ambric code
generation generate aJava object and aStruct code for
each actor and top level design file for the application. The
aJava source code is compiled into executable code by using
Ambrics compiler.

For DPN we have implemented a communication API that
use bounded buffers to connect output ports to input ports:



Fig. 2. CAL compilation framework.

these are blocking for writing when the buffer is full, but
allows peeking without blocking. If there are multiple actors
on single core, writing on full buffer blocks the running of
the current actor and gives control to the other actors. The
flattened network is used to generate a round-robin scheduler
for the sequential C code and a host code for Epiphany that
map the actors on separate processors.

1) The Dataflow Communication Library: All the com-
munication that is done between the actors is done through
FIFO buffers, thus making this functionality a key component
for the compilation of the applications developed in CAL
onto a manycore architecture. We suggest to implement this
functionality as a dataflow communication library, with only
five basic functions. In addition to the traditional functions
of write and read from the FIFO buffer we have added
functions such as connect which logically connects two
actors, disconnect which logically disconnects the actors,
and finally a function end_of_transmission that flushes
the buffer and indicates that there are no further tokens to be
sent.

When implementing these buffers on the Epiphany archi-
tecture, two special features of this architecture need to be
considered. First one is the speed difference between read and
write transactions (as mentioned earlier, writes are faster). The
second one is the potential use of DMA to speed up memory
transfer and allowing the processor to do processing in parallel
to the memory transfer.

We have investigated three ways to implement the FIFO
buffering. The first implementation is a ‘one-end-buffer’ which
places the buffer inside the input port in the destination core.
(Putting the buffer on the source core would result in reading
from a remote core instead of writing to a remote core and thus
a tenfold slowdown.) The communication overhead resides
completely in the sender.

If we want to use DMA, we need to have a buffer on both
the sender and receiver side. In the second implementation
(‘two-end-buffer’) each core performs read and write trans-
actions on its local memory and then uses DMA to transfer
the data. This transfer is performed when both sides are ready,
which requires that the sender’s buffer is full and the receiver’s
buffer is empty. Even though we are using DMA for data
transfer, the processor will be busy waiting for the DMA to

finish. This is obviously not very efficient, and this method
should be seen as a transition to our third method.

To allow the DMA to work in parallel with the processing
core, we have implemented a ‘double-two-end-buffer’ method,
which introduces two “ping-pong” buffers on each side of the
communication channel. This allows the cores to work on one
local buffer while the data from the other buffer is transferred
to the other core by means of DMA.

If the token production rate on the sending actor is equiva-
lent to the token consumption rate on the receiving actor, it is
expected that the ‘double-two-end-buffer’ method should be
the most efficient. On the other hand, if there is a big imbal-
ance in the production/consumption rate, all three buffering
methods will suffer from blocking, after the buffer gets full.

We have implemented the broadcast capability in all three
implementations of the communication API. This mechanism
is used when the output channel of an actor needs to be con-
nected to multiple input channels of the other actors. Hence,
the same output data can be written to multiple input ports and
actors. In all implementations, the synchronization between
sender and receiver is achieved by using flags belonging to
the buffers. These flags indicate the availability of the data or
the empty space in the buffers. These flags are kept in the
local memories of the cores due to being polled continuously
in a busy waiting loop, during the read and write operations.

The write and read function calls are designed to be
asynchronous (non-blocking calls) by default, however, they
will be blocking if the buffer is full or empty respectively.
The functions end_of_transmission, connect, and
disconnect calls will always be blocking. More details of
the communication library are described in a different work
[19].

V. IMPLEMENTATION

As our case study, we use the two-dimensional inverse
discrete cosine transform (2D-IDCT), which is a component
of MPEG video decoders. The CAL implementation of the
2D-IDCT is used as input to the code generator and as a
reference implementation for the hand-written code. This im-
plementation consists of 15 actors and these actors are mapped
one-on-one to the Epiphany architecture using 15 out of 16
available cores. This implementation of the 2D-IDCT uses two
one-dimensional inverse discrete cosine transforms after each



Fig. 3. The dataflow diagram of 2D-IDCT algorithm. The connections between actors, in blue, is done with 4 communication channels, while the external
input, in red (In, Signed and Out), is done over a single channel.

other, with all actors connected in a pipeline fashion. One
dimensional IDCTs are highlighted with the dotted rectangles
in Figure 3.

Both hand-written and automatically generated implemen-
tations map the actors onto the cores by using the serpentine
layout which can be seen in Figure 4. This layout takes into
account the physical layout of the cores on the chip and the
routing method of the architecture (X-Y routing in this case),
so that consecutive actors are mapped into neighboring cores.

Fig. 4. Serpentine layout to map 2D-IDCT to cores on the chip. RowSort is
mapped onto core 0, Clip is mapped onto the core13 whereas core 12 is not
used.

A. Hand-written Implementation

The hand-written implementation of 2D-IDCT is based on
the reference CAL code. The implementation includes an
embedded communication mechanism. This communication
mechanism is similar to the ‘one-end-buffer’ implementation
of the communication library presented in the previous section.
However, the buffer size is 1 which means an actor can send
only one data token at a time to a target actor. Due to the
write operation being cheaper than the read operation on the
NoC of the Epiphany architecture, the write function of the
communication mechanism writes the data to the memory of
the remote core and the read function of this mechanism reads

the data from the local memory of the core. The read and the
write operations are both blocking. The communicating cores
use the flags of the ports in order to inform each other about
the availability of data elements or empty space in the buffer.
Two actors had input availability control for all input channels
in the guard states. Therefore, these actors have been modified
further to be able to combine multiple communication chan-
nels into 1 channel. There is no broadcasting functionality.
Majority of the actors have 1/1 input/output ratio however
there are two actors which have 1/2 input/output ratio and two
actors which have 2/1 input/output ratio. This information is
used in order to run each actor in a loop until they produce
the expected number of outputs.

B. Automatically Generated Implementations

The results from the initial and three different optimizations
of our compilation framework can be found in Table I. The
initial implementation, which is called as ‘Uninlined’ in Table
I, is intended to be structurally similar to the original CAL
actors. Actions are translated to two functions: action body for
the body of the action and a separate function, action guard,
to evaluate the conditions of the guard of the action. For
proper initialization the variable declaration of the actions are
pushed for both functions. In the action scheduler AMs test
instruction are translated to function call to the action guard
and test input functions, and exec instructions are translated
to a call for action body.

The second implementation, called as ‘Inlined G’ in Table
I, optimizes the initial one by using a pass that inline all
action guard functions. Beside function inlining, the pass also
analyses the scope of the variables and remove unused variable
initializations.

The third implementation, ‘Inlined G & B’ in Table I, inlines
both action guard and action body function calls. Like the
second pass, third pass also use variable scope information



to eliminate unnecessary variable initializations. Thus, instead
of copying the entire action variable initializations, only those
variables which are used by the guard or the body of the action
are initialized.

All generated implementations use the custom communi-
cation library. The parameters of the communication library
such as buffer sizes, communication mechanism version and
mapping layout are controlled by the code generator however
for this evaluation they are kept fixed at the best configuration
found after exploring the design space.

C. Differences Between Hand-written and Generated Imple-
mentations

To be able to understand the reasons behind the performance
differences and evaluate the code generation, we can note some
important differences between the automatically generated and
the hand-written implementations. These differences are:

• State machines, in the generated code, often include high
number of branches and states.

• Actions are generated as separate functions whereas in the
hand-written code, they are combined in one function.
Function calls add overhead (due to dealing with the
stack) and decrease the performance.

• Different communication mechanisms are used. The
mechanism, that is used in the generated code, is meant
to be generic, e.g broadcasting is supported which is not
necessary for the particular application used as the case
study. Hence the generated code includes communication
mechanism overhead when compared to the hand-written
code.

• Several further optimizations are implemented in the
hand-written code, such as reduction of channel numbers.
In the CAL implementation, actors are connected to each
other with 4 channels. These channels are combined
into one channel in the hand-written code in order to
decrease network setup overhead and simplify the usage
of channels.

VI. RESULTS AND DISCUSSION

We tested both of the implementations on the Epiphany
III microchip running at 600 MHz. Among the different
mechanisms of the communication library, we got the best
results with the ‘one-end-buffer’ mechanism. Hence, we use
the results of this mechanism for the discussions and the
evaluation. In the test cases, we read the input data elements
from the external memory and write the output elements back
to the same external memory.

As can be seen in the last row of Table I the execution of
the hand-written implementation takes 0.14 ms when the input
size is 64 data elements (a block) and 93.6 ms when the input
size is 64k data elements. These are the results which we aim
to achieve with the automatically generated implementation.

Initially, the execution of the auto-generated implementation
took around 1.2 ms for 64 data elements and around 405
ms for the 64k data elements. These results are given in
the first row of Table I. The hand-written implementation

out-performed the auto-generated implementation by 8.8x for
64 data elements and by 4.3x for 64k data elements. After
further analysis, it is realized that the main bottleneck for
both implementations is the external memory access. Most
of the execution time is spent on reading the data from the
external memory. In addition to the reading, writing to the
external memory consumes some time as well. In the hand-
written implementation, the external memory access for each
input and output data is at a minimal level. However, in
the auto-generated implementation, there were more external
memory accesses per input and output elements due to both
the communication library and the code generation.

In the auto-generated implementation, the variables, which
were residing in the external memory, are moved to the local
memory of the cores. This significantly decreased the execu-
tion time from 405 ms to 154 ms for 64k data elements, which
resulted in a throughput increase by 63%. The performance
of the auto-generated implementation got as close as 1.6x
to the performance of the hand-written implementation. This
optimization is referred as memory optimization in Table I.

TABLE I
EXECUTION TIMES AND CYCLE NUMBERS OF THE IMPLEMENTATIONS,

USING SERPENTINE LAYOUT AND EXTERNAL MEMORY ACCESS (BUF SIZE:
256 FOR THE AUTO-GENERATED IMPS). (MEM OPT: MEMORY

OPTIMIZATION G: ACTION GUARD, B: ACTION BODY, K: THOUSAND, M:
MILLION)

64 data elements 64k data elements
No mem opt + Uninlined 1.206ms (724k cyc) 405.6ms (243M cyc)

Mem opt + Uninlined 0.389ms (233k cyc) 153.9ms (92M cyc)
Mem opt + Inlined G 0.387ms (232k cyc) 130.6ms (78M cyc)

Mem opt + Inlined G&B 0.386ms (231k cyc) 125.2ms (75M cyc)
Manual 0.136ms (81k cyc) 93.6ms (56M cyc)

Fig. 5. Total execution times for the auto-generated implementation together
with the times spent for the computation.

So far, the optimizations were done only on the com-
munication library. Then, as the first optimization to the
code generation, we inlined the functions which were the



correspondence of the guard conditions. The results, when this
optimization is applied, can be seen in the third (‘Mem opt
+ Inlined G’) row of the Table I. As the second optimization
on the code generator, we inlined the functions which corre-
sponded to the action bodies. This optimization provided us
a new auto-generated implementation and the results of this
implementation corresponds to the fourth (‘Mem opt + Inlined
G & B’) row of the Table I. By applying these optimizations
to the code generation, we decreased the execution time from
154 ms to 125 ms for 64k data elements. This decrease in the
execution time corresponds to 18% throughput increase. Using
this result, the hand-written implementation shows 1.3x better
performance. The difference is reduced further from 1.6x to
1.3x.

After the optimizations on the communication library, apart
from the input and output data elements, no data element is
kept in the external memory. There are a few data elements
which reside in the shared memory and used for synchroniza-
tion between the host and core0, however, they can be ignored
since they are used only once before the cores start running.
Even if the only access to the external memory is the access
to input and output data elements we find that this external
access is dominating the execution time. Figure 5 shows the
total execution times of individual cores together with the time
spent for the computation. The difference between the total
time and the actual computation time gives the time that is
spent on the communication and waiting for I/O operations
due to the slow external memory accesses. In Figure 5 we
can see that for most of the cores around 90% of this time
(the difference of the total and the computation times) is
spent on reading the input data elements from the external
memory. The external memory accesses are performed by
only the first and last cores. For 64k elements, the first
core performs 64k external memory reads whereas the last
core performs 1k external memory reads and 64k external
memory writes. In the hand-written implementation, the first
core runs for approximately 56 million cycles and 51.9 million
of these cycles are spent for reading the input from the external
memory. The situation is more or less the same in the auto-
generated implementation. Due to the slow read operations in
the first core, the other cores wait for the input data and this
waiting time is the main contributor of the difference between
the total and the computation times. The cost of the write
operations, in the last core, which is far less than the cost of
the read operations, are mostly hidden by the cost of the read
operations. The cost of the communication between the cores
and the computation times are mostly hidden by the cost of the
external memory accesses. In summary, in this application, the
cores are mostly blocked while reading the input data elements
and they are blocked for a shorter time while writing the output
data elements.

An additional aspect for comparison between the hand-
written and the auto-generated implementation is the code size.
In Table II the machine code size of each actor/core is given
for both hand-written and auto-generated implementations.
(The auto-generated implementation, which includes memory

optimization and inlined action guards & action bodies, is
used.) These code sizes are obtained by running the ‘size’
command in linux command line. The .elf files, which are
produced by the Epiphany linker, are used as input parameters
to the ‘size’ command. The auto-generated implementation has
71% more machine code when compared to the hand-written
implementation.

TABLE II
MACHINE CODE SIZE (IN BYTES) OF EACH CORE FOR HAND-WRITTEN

AND AUTO-GENERATED IMPLEMENTATIONS

Cores / Actors Hand-written Auto-generated
host 8,636 8,077

core0 / RowSort 5,488 9,020
core1 / Scale 5,556 9,568

core2 / Combine 5,012 9,372
core3 / ShuffleFly 5,080 8,888

core4 / Shuffle 5,556 9,452
core5 / Final 4,952 9,060

core6 / Transpose 5,708 10,628
core7 / Scale 5,244 9,568

core8 / Combine 5,008 9,376
core9 / ShuffleFly 4,920 8,892
core10 / Shuffle 5,080 9,456
core11 / Final 4,952 9,064
core12 / Shift 4,952 9,044

core13 / Retranspose 7,160 10,564
core14 / Clip 5,044 10,236

Total 87,712 150,265

Another interesting aspect is the difference in development
effort writing the 2D-IDCT application in C and writing it in
CAL. In Table III the number of source lines of code (SLOC)
for each actor for the hand-written (native - C) implementation
and the reference CAL implementation is compared. We see
that in total, 495 SLOC are needed to implement the 2D-
IDCT application in CAL while more than four times as many
(2229 SLOC) is needed for the C implementation. This clearly
indicates the expressiveness of the CAL language and the
usefulness of the CAL compilation tool as described in this
paper.

VII. FUTURE WORK

For further evaluation of the code generation and the custom
communication library, a more complex application such as
the entire MPEG-4 decoder implementation can be both au-
tomatically generated and manually written. This work might
need combining and splitting the actors. Hence the compilation
framework may need to be extended. In addition to the evalu-
ation of the code generation, the mapping approach proposed
by Mirza et al. [20] can be tested with this application.

The performance of both hand-written and auto-generated
implementations might be increased by further optimizations.
We observed that the main bottleneck for both of the imple-
mentations is the read operations performed on the external
memory. An optimization could be using the write operations



TABLE III
SOURCE LINE OF CODE OF EACH ACTOR FOR HAND-WRITTEN AND CAL
IMPLEMENTATIONS. (THE NUMBER OF CODE LINES ARE THE SAME FOR

THE DIFFERENT INSTANCES OF THE SAME ACTORS.)

Actors + libs Hand-written CAL
RowSort 190 57

Scale 142 26
Combine 148 48

ShuffleFly 116 22
Shuffle 143 41
Final 113 10

Transpose 214 71
Shift 109 9

Retranspose 203 54
Clip 175 45

Network + comm 333 112
Host 343 –
Total 2229 495

instead of read operations. Such as, instead of the Epiphany
core(s) reading the input data from the external memory, the
host can write the data to the Epiphany core’s memory. The
synchronization between the host and the Epiphany core can
be obtained by using the blocking write operations. Hence
no read operations would be used. Another optimization for
the communication library would be customization of the
functionality. E.g the operations such as broadcasting can be
turned on and off for different applications in order not to
add overhead when the operation is not needed. A radical
optimization can be replacing the communication mechanism
with a more efficient one which can make better use of the
specific features of the architecture.

In our test application, each actor is connected only to
the neighbor actors. Hence the communication is not very
complicated, and choosing the best fitting layout is not a
complex task. However, with larger applications when the
communication patterns get more complicated, choosing the
mapping layout, quickly becomes a very complex task. For e.g
individual actors might be connected to several other actors.
Hence the mapping method would need to take network usage,
communication frequency between actors etc. into account
while searching for the best fitting layout. Mirza et al. [20]
propose a solution to the mapping, path selection and router
configuration problems. They refer that their approach is
capable of exploring a range of solutions while letting the
designer to adjust the importance of various design parameters.

As an extension to the compilation framework we used in
our work, new backends can be implemented and integrated
to the compilation tools in order to target other manycore
architectures and the code generation can be tested on these
architectures.

VIII. CONCLUSIONS

Manycore architectures are emerging to meet the perfor-
mance demands of high-performance embedded applications

and overcome the power dissipation constraints of the exist-
ing technologies. A similar trend is visible in programming
languages in the form of dataflow languages that are naturally
suitable for streaming applications. This paper deals with the
evaluation of a compilation framework along with a custom
communication library that takes CAL actor language (CAL)
code as input and generates parallel C code targeting Epiphany
manycore architecture. As a case study we have used a CAL
implementation of a 2D-IDCT application and compare the
automatically generated code from the proposed tool-chain
with a hand-optimized native-C implementation.

The preliminary results reveal that the hand-written im-
plementation has 4.3x better throughput performance with
respect to the auto-generated implementation. After mem-
ory access optimizations on the communication library, the
auto-generated implementation gained 63% throughput in-
crease. With further optimizations on the code generation, the
throughput of the auto-generated implementation was further
improved by 18%. To sum up, we are able to decrease the
difference in execution time between the hand-written and
the auto-generated implementations from a factor of 4.3x to
1.3x. In terms of the development effort by considering source
lines of code metric, we observe that the CAL based approach
requires 4.5x less lines of source code when compared to the
hand-written implementation.

To conclude we are able to achieve competitive results of ex-
ecution time with respect to the hand-written implementation
and the use of high-level language approach leads to reduced
development effort. We also foresee that our compilation
methodology will result in focusing on optimizing the tool-
chain to produce efficient implementations rather than manual
optimizations performed on each application.

ACKNOWLEDGEMENTS

The authors would like to thank Adapteva Inc. for giving
access to their software development suite and hardware board.
This research is part of the CERES research program funded
by the Knowledge Foundation and HiPEC project funded by
Swedish Foundation for Strategic Research (SSF).

REFERENCES

[1] Z. Ul-Abdin and B. Svensson, “Occam-pi for programming of massively
parallel reconfigurable architectures,” International Journal of Reconfig-
urable Computing, vol. 2012, no. 504815, p. 17, 2012.

[2] E. A. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[3] B. Bhattacharya and S. S. Bhattacaryya, “Parameterized dataflow model-
ing for DSP systems,” IEEE Transactions on Signal Processing, vol. 49,
no. 10, pp. 2408–2421, 2001.

[4] J. Eker and J. W. Janneck, “CAL language report specification of
the CAL actor language,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M03/48, 2003.

[5] Epiphany, “Epiphany architecture reference G3, rev 3.12.12.18,”
Adapteva, Tech. Rep., 2013.

[6] J. Eker and J. W. Janneck, “Dataflow programming in CAL – balanc-
ing expressiveness, analyzability, and implementability,” in Conference
Record of the Forty Sixth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), 2012. IEEE, 2012, pp. 1120–1124.

[7] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli,
and M. Raulet, “Overview of the MPEG reconfigurable video coding
framework,” Journal of Signal Processing Systems, Springer, 2009.



[8] E. Gebrewahid, M. Yang, G. Cedersjö, Z. Ul-Abdin, J. W. Janneck,
V. Gaspes, and B. Svensson, “Realizing efficient execution of dataflow
actors on manycores,” in International Conference on Embedded and
Ubiquitous Computing, IEEE, 2014.

[9] J. Janneck, “A machine model for dataflow actors and its applications,”
in Signals, Systems and Computers (ASILOMAR), 2011 Conference
Record of the Forty Fifth Asilomar Conference on. IEEE, 2011, pp.
756–760.

[10] M. Yang, S. Savas, Z. Ul-Abdin, and T. Nordström, “A communication
library for mapping dataflow applications on manycore architectures,”
in Sixth Swedish Workshop on Mutlicore Computing, 2013.

[11] G. Roquier, M. Wipliez, M. Raulet, J.-F. Nezan, and O. Déforges,
“Software synthesis of CAL actors for the MPEG reconfigurable video
coding framework,” in 15th IEEE International Conference on Image
Processing, 2008. ICIP 2008. IEEE, 2008, pp. 1408–1411.

[12] ORCC, “Open RVC-CAL compiler,” http://orcc.sourceforge.net/,
Accessed: 3 Aug 2013, 2013. [Online]. Available:
http://orcc.sourceforge.net/

[13] D2C, “CAL ARM compiler,” http://sourceforge.net/projects/opendf/,
Accessed: 3 Aug 2013, 2013. [Online]. Available:
http://sourceforge.net/projects/opendf/

[14] J. W. Janneck, “Tokens? what tokens? - a gentle introduction to dataflow
programming,” Programming Solutions Group, Xilinx Inc., Tech. Rep.,
2007.

[15] A. Jones and M. Butts, “Teraflops hardware: A new massively-parallel
mimd computing fabric ic,” in Proceedings of IEEE Hot Chips Sympo-
sium, 2006.

[16] G. Cedersjö and J. W. Janneck, “Toward efficient execution of dataflow
actors,” in Signals, Systems and Computers (ASILOMAR), 2012 Confer-
ence Record of the Forty Sixth Asilomar Conference on. IEEE, 2012,
pp. 1465–1469.

[17] G. Kahn and D. MacQueen, “Coroutines and networks of parallel
processes,” In Information Processing 77: Proceedings of the IFIP
Congress, 1977.

[18] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings
of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[19] M. Yang, “CAL code generator for epiphany architecture,” Master thesis
report 1401, Halmstad University, 2014.

[20] U. M. Mirza, F. Gruian, and K. Kuchcinski, “Design space exploration
for streaming applications on multiprocessors with guaranteed service
noc,” in NoCArc ’13 Proceedings of the Sixth International Workshop

on Network on Chip Architectures, 2013.


